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Topics

• Summary of Problem
– Bi- Modal cluster cracking

• Previous Research
– Scatter in small fatigue crack growth from micro-notches.

• Current Research
– Data
– Summary of issues involved in small fatigue crack growth 

from smooth surfaces.
– Analysis
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Background

• Features of small crack growth

– Growth-arrest

– Coalescence of microcracks

– Growth at smaller SIFs and at faster rates
than equivalent long cracks

– Scatter significantly greater than that for long 
cracks
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Causes of Scatter

– Each small crack front will encounter randomly 
oriented microstructure and thus have a unique growth 
pattern.

– Different material forms will have varying grain 
profiles.
Ex. Grains in stock rod will be thin and elongated while 
those in plate are characterized by three dimensions; 
longitudinal, transverse and short transverse.

– Randomly arranged crack cluster neighborhoods affect 
growth through shielding and coalescence.
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Smooth Surface 
Current Research

– On smooth surfaces the onset of cracking occurs in 
randomly arranged clusters described as micro-multi-
site cracking.

– Many cracks will arrest (effectively non-propagating 
cracks), secondary.

– Propagating (primary) cracks are those that continue to 
grow, possibly through crack coalescence and can 
ultimately lead to failure.

– Primary cracks are influenced by the shielding effects
of the network of nearby secondary cracks which create 
a unique environment for growth.
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Bi-Modal Crack 
Distributions

• Small Crack distributions are bi-modal: Both primary and 
non-propagating cracks have separate distributions.

• First noticed by Swain who termed Valid and Invalid 
cracks while looking for which cracks to include in 
studies.

• Distributions cannot be separated in early stages of 
loading.
– Measurements are started once cracks are of a detectable size.
– Tests are stopped at regular intervals and cracks/clusters are 

measured and recorded.
– Tests are run until failure.
– Based on long crack data the distributions can be separated.
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Micro-Notches
Past Research

• Test Setup
– Alloy: 6061-T651 (rod form)
– Grain size: Transverse -200 microns,

Longitudinal - 350 microns
– Properties: 0.2% offset yield stress – 283 MPA,

ultimate strength – 293 MPA
– Test specimen: Square cross-section 

150 micron notch corner edge
– Loading condition: Bending about a cross section 

diagonal 
– Maximum stress of 0.8 yield stress on corner edge
– Loading frequency: 10Hz
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Test Data

Micro-Notch Test Data
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• Cubic Regression Analysis Performed on Data
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Regression Analysis

• da/dN computed by differentiating resulting 
equations
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Trends in Standard 
Deviation

• Behavior of S.D. of crack growth rates can be 
represented by exponential function of the form:

• a = crack length, C,B = Constants
• Nonlinear regression analysis provides the following:

( )aBCeS Φ=

( )[ ]26 80010299.281.0 −⋅− −

= aeS
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Grain Intersection 
Analysis

• Corner Crack fronts assumed to grow with 
quarter circular crack fronts.

• n = number of grains intersected by crack front
a = Crack depth
d = Mean grain diameter
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S.D. and Grain Intersection 
Relations
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Crack Length
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Grain Intersection
Relations

• Number of grains intersected by crack front is 
a linear function of the crack length.

• S.D. can therefore be expressed as a function 
of number of intersections:

• Applications to multiple crack shapes
– Ex. Thumbnail cracks intersect twice as many 

grains as similar depth corner cracks.

( )nBCeS Θ=
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Grain Intersection
Relations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

6 7 8 9 10 11 12 13 14 15

Grains Intersected by Crack Front

G
ro

w
th

 R
at

e 
St

an
da

rd
 D

ev
ia

tio
n

• S.D. in Growth Rate vs. Grain Intersections



Daniel Guggenheim School of Engineering

Distribution Separation

• Primary cracks are those that have reached long 
crack size by failure.

• Cracks assumed to be semi-circular and be long 
after 14 grain intersections.

• Semi-circular assumption backed up by failed 
specimen observations.

• Borderline cracks are separated by observing crack 
growth rates.
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Distribution Separation

•Failed specimens often reveal additional cracks 
that did not lead to specimen failure.
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Test Procedure

• Sinusoidal Loading

• Loading Frequency: 20 Hz

• R = .1, Max Load 5000 Lbs

• Max Load approx. 75% σyield

• Measurements taken on Questar 
Telemicroscope.
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Test Specimen

• L = 8 in, H = 2 in
• t = 0.25 in, r = 0.75 in

• SCF = 1.2 (over ligament stress)

• Mid-Section Polished with:
– Three abrasive papers

• 240, 320, 600
– Three Diamond Pastes

• 15, 6, 1µ (applied with low nap cloth)
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Material Properties

Aluminum 7075-T7351
• Material Properties:

– Mean σyield= 64.0 ksi
– Mean σUlt= 75.3 ksi

• 1/4 inch plate material with pancake grain structure.
• Mean linear intercept grain dimensions:

– 58.8 microns (Longitudinal)
– 76.1 microns (Transverse)
– 15.0 microns (Short Transverse)
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Material Properties

Longitudinal                                       Short Transverse

•Sample of material etched 
with  Kellers reagent
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Raw Data Sample

Location Coordinates

Coalesced with A

Stepped Crack, 
Coalescence, additional data
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Crack Length Vs. Cycles
Specimen F

Failure at 59536 Cycles
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Crack Growth Rate Data

Growth Rates of Primary Cracks

Small Crack Growth Rates
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Illustrative Crack Shielding
FEM

KI=1.872, 1.455 KI=1.913, .7129
*Performed on Franc 2d (Cornell University)
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Evolution of Clusters
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Evolution of Clusters
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Evolution of Clusters
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Crack Morphology

•Many cracks will have 
complex shapes

•Long crack behavior 
must be observed to 
assign proper length

Examples of Observed Crack Patterns
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Crack Morphology

ExplanationStage 2Stage 1Name

•Formed through 
coalescence, which 
does not always 
occur.
•Tabulated as one 
crack after 
coalescence.

Stepped 
Crack

• Formed through 
coalescence.
•Tabulated as one 
crack after 
coalescence.

Kinked 
Crack

•One fork arrests, one 
grows.
•Length is length to 
longer fork.

Forked 
Crack

Examples of Observed Crack Patterns
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Analysis

• Lognormal distribution assumed for crack lengths 
at each cycle count.

• Student-t analysis performed to calculate 95% 
confidence bounds.

• This procedure can be used to bound small crack 
growth until acr, where normal methods of crack 
growth analysis can be used.

• This allows calculation of the 95% confidence limit 
on failure time.
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Analysis Example

Primary Crack Data
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Objectives of Continuing 
Research

• Extend the Bi-Modal statistical representation 
of small cracks.

• Similar to EIFS methodology however it seeks 
a physically based approach to include the 
entire small crack regime.

• Issues to be resolved:
– Stress level/Load ratio (R) effects.
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Objectives of Continuing 
Research

• Operational Condition Issues

– Variable amplitude loading, overload/underload 
effects.

– Material orientation effects (ex. Plate, rod…)

– Surface preparation effects.
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Objectives of Continuing 
Research

• Analysis:

– Crack shielding in random cluster effects.

– Use of statistically based, effective stress intensity 
factor incorporating above mentioned physical 
effects.
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Objectives of Continuing 
Research

• Additional Materials (β-Annealed Ti-6Al-4V):

– Dual Phase, Widmänsatten/Colony Microstructure
• α (HCP), β (BCC)

– Key Parameters: Prior β grain size, α Colony Size, 
Width of α Lamellae
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Contact Information/
Questions

• Marcus Cappelli
– gte109q@mail.gatech.edu

• Robert Carlson
– BCCRLC@aol.com

• George Kardomateas
– George.kardomateas@aerospace.gatech.edu
– 404-894-8198

School of Aerospace Engineering
Georgia Institute of Technology 

Atlanta, GA, USA
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Questar

• Questar QM1 Telemicroscope

• ≈ 125 x magnification

• Better than 3µ resolution

• Capable of VHS recording


